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INTRODUCTION

The AMMRC sponsored program is to provide mechanical characterization
data for candidate anti-ballistic missile structural materials for use in
design studigs and vulnerability analysis. Various tests have been conducted
on 2014-T651 aluminum alloy in order to determine the mechanical properties
as a function of stra‘n rate under both uniaxial and biaxial stress con-
ditions. In addition, the fracture toughness and pin bearing strength of the

material were determined according to standard A.S.T.M. methods.

The uniaxial tension and ccmpression tests were run at rates from 10"5

to 103 sec™! while the biaxial tests were run at rates from 1074 sec”! to

']. The biaxial tests were performed in the tension-tension, tension-

1 sec
compression (compression-shear) and compression-tension (tension-shear)
stress quadrants, with the tests run on tubular specimens using a combination
of axial tension or compression, internal pressure, external pressure and
torsion. These combined stress tests were performed at constant stress ratios
to failure. The fracture toughness was determined at two different loading
rates on two specimen configurations. ASTM compact fracture toughness spec-
imens configurations were used as opposed to the ASTM bend specimen. Two
different edge distance ratios and three plate thicknesses were tested to
determine the pin bearing strength of the material.

The majority of the tests, including fracture toughness and pin bear-
ing strength, were run on a servo-c.ntrolled hydraulic test machine designed

5 1

and built by Terra Tek. This machine covered rates from 107~ to 10 sec’

while the higher rate uniaxial tests were run on a split Hopkinson facility.




MATERIAL DESCRIPTION

Kaiser 2014-T651 (AMS4014) aluminum alloy was obtained from the Army
Materials and Mechanics Research Center in the form of three 2 inch thick
rolled plates. A sample of the material was subjected to metallurgical
examination to determine the in-plate directions parallel and transverse to
the rolling direction. At a magnification of 53X, photomicrographs reveal
flattened and elongated grains such that their length in the direction of
rolling, width and thickness dimensions are roughly in the ratio of 6:5:1.
The length of a grain is about 1-1/4 to 1-1/2 millimeters. The photomicro-
graphs and their orientations with respect to the plate directions are shown
in Figure 1. One inch on the photos corresponds to 0.5 millimeter in the
material.

The majority of the specimens tested in this phase of the work were
taken with their axis in the rolling direction of the plate (i.e., major axis
parallel to the rolling direction). Additional uniaxial stress tests were,

however, performed with the specimen major axis in the plate thickness and

widith directions.

TEST METHODS
Since the test program required such a wide range of strain rates and
test types a detailed description of the equipment and procedures used to

perform the program appears to be appropriate. This section will deal with

that description.

Medium Strain Rate Machine

As was pointed out earlier all but the highest rate uniaxial tests were
performed on a high speed, servo controlled, hydraulically actuated test ma-

chine. A photograph of the machine and accompanying controls is shown in

Figure 2.
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Axial/Biaxial Medium Strain Rate Machine.
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Axial Hydraulic Actwators

The machiné consists of a loading frame having two smooth columns with
two adjustable platens. The Tower platen normally remains fixed with the
upper platen adjusted to various heights with the help of two attached hy-
draulic 1ift cylinders. Attached to the lower platen is a 50,000 pound 6
inch stroke linear actuator designed especia]iy for fatigue (capable of 20
Hz). This actuator is controlled with a 15 gpm servo valve which allows

6 to 1 sec'] to be achieved.

strain rates of 10°
In addition a 50 gpm 4-way solenoid operated valve is also mounted on
the back of the actuator using a flow-control subplate manifold to vary the
flow for open-loop operation. This valve allows the highest strain rates
attainable hydraulically to be reached (10 sec"]). Accumulators are used to
supply the excess flow needed for these high rate tests.
fydraulic Torstonal Actuator
Attached to the linear actuator is a 30,000 in-1b 270° rotary actuator
also controlled with a 15 gpm servo valve. A zero backlash coupling is used
to attach this actuator to the bottom of the linear actuator; the rotary
actuator is naturally removed during higher rate linear tests to reduce the
moving mass. QBoth actuators are supplied by a 100 h.p. 50 gpm hydraulic
power supply.
Azxial Gas Actuator

2 sec']) a high pressure gas

For the intermediate rate tests (1 to 10
actuator is attached to the upper platen. This actuator is operated by char-
ging a large reservoir in back of the piston, and a small reservoir in front
of the piston to equal pressure. The piston moves forward when the small
reserveir is exhausted by flow through an orifice. Exhaust of the small

reservoir is initiated through the opening of a fast acting so]enoi& valve

s — - - - - s e S
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mounted downstream of the orifice. Piston velocity, and hence rate of
3 loading, is controlled by the pressure of the working gas, the orifice
%’ size, and, to some extent, the specimen. Design of this actuator is

% similar to the one used by Green, et.al.(1).

Pressure Actuators

O\ ki

Internal and external pressure for the biaxial tests is supplied by

a 20,000 psi intensifier shown in Figure 3. This intensifier is also

b i ot b R

servo-controlled and hydraulically actuated. The hydraulic actuator drives
the piston into the high pressure vessel causing a change in volume of the

pressurized fluid. Sinie the system is closed, this change in volume pro-

AT

duces a change in pressure which is sensed by a pressure transducer. The

pressurization rate can be controlled using the output of the pressure

transducer. This type of control is used to control hoop strain rate under

biaxial conditions.
Machine Controls

Controls for the medium strain rate machine and pressure intensifier
are conveniently located in a three bay console. This console houses
servo controllers for each actuator, including the intensifier, which are
each capable of three feedback modes (displacement, strain, load). The
servo controllers allow independent selection of the feedback mode with
zero drift. Also located in the console are three digital ramp generators
for rate coniro]. An Exact Function Generator and cycle counter is used
to command cyclic fatigue and keep track of the number of cycles respectively.

One bay of the console houses the pneumatic contr@]s for the gas ac-
tuated fast acting system. The main body of the controls is made up of a
digital pressure meter and pressure regulator to monitor and control the

charge pressure. Micro switches activate the fast acting solenoid valves.
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Split Hopkinson Bar

The high rate uniaxial tension and compression tests were performed on
the split Hopkinson's bar system shown in Figure 4. Depending on the bar
configuration and sample properties the accessible strain rate range is from
100 to 104 sec']. A complete description of this apparatus is compiled else-

where. (2,3)

Figure 4. Split Hopkinson Bar Test Facility.
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Uniaxial Tension/Compression

Uniaxial tension and compression samples were machined according to

Liaderal

Figure 5. As indicated earlier in the text, the majority of the samples
were prepared with their major axis parallel to the rolling direction of

the plate. After machining, the dimensions of each sample were checked to

be within the desired tolerances, the measured values were recorded to the
nearest .001 inches. These values were compared to measurements taken after

testing in ovrder to check the ductility of any particular sample.

Due to the small physical size of the samples, electrical resistance
strain gages were used to monitor the strain as opposed to an external strain
transducer. Gages were applied using Micro-Measurements M-Bond 610 adhesive,
oven cured at 350°F. Micro-Measurements type EA-06-062AQ-350 gage was applied
to the compressive samples while a type EA-06-031DE-120 gage was used on the
tensile samples. Tests were run using two axial gages in order to assure
alignment of the system. 10,000 1b. and 1,000 1b. axial force load cells were
used to monitor the force on the compressive and tensile specimens respectively.
Both load cells were calibrated and found to be linear to within .15% of full
scale.

For the lower rate tests, strain feedback was used to drive the servo
system. This allowed the strain rate to remain constant through beth the
elastic and plastic regions of the tests. Figure 6A is a typical test record
for these tests. The higher rate tests, including the Hopkinson bar tests
were run open loop, therefore, rates cited for these tests are given as an
average plastic strain rate. Figure 6B is an example record for this type
of test.

Data acquisition was accomplished through the system shown schematically

in Figure 7. Transducers (load cell, strain gages, etc.) located at the
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machine were fed into a bridge completion unit, which supplied the
necessary excitation voltages and resiStance offset to complete standard
Wheatstone bridges. The output signal ¥from the bridge was thea amplified
by a type 122 D.C. Neff Amplifier with the signal recorded by:-one of th(ee _»77:
systems: an X-Y recorder, an osci1ioscope,—orvwith-a,Digifal POP Eab 11
computer. For the slower uniaxial tests a X-Y-Y' Hewlett Packard Modz1
7046A recorder was used. An oscilloscope was employed for the high rate
tests. Tests were plotted as stress and strain -vs- time which facilitated

calculation of the strain rate and the stress-strain curves.

BRIDGE MEDN |
COMPLETION AATE
UNIT MACHINE
NEFF TYPE
122 D.C.
AMPLIFIER”" PDP
LAB Il
DIGITAL
COM-
PUTER
CRT HARD
X-Y RECORDER SCOPE COPY
oR ONIT
0SCILLOSCOPE

Figure 7. Schematic of Data Acquisition System

Biaxial Tests

Biaxial tests were performed on the tubular specimens shown in Figures
8 and 9. Axial tension and internal pressure tests were performed on the
configuration seen in Figure 8 while axial compression, torsion and external
pressure tests were performed on specimens shown in Figure 9. The method
of gripping these specimens is shown in Figure 10. A threaded collar con-

taining eight bolt holes is threaded on to the specimen leaving approximately

12
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Figure 10. Biaxial trip

1/4 inch of the specimen exposed. The taper on this exposed ead allows
initial alignment of the sample with respect to the loading frame. Bolts
are then inserted through the collar and torqued to 150 in-1bs per bolt
while maintaining alignment. This torque transposes a compressive load to
the tapered end of the samples which was calculated and found to be suffic-
ient to maintain zero slippage under a torsional load.

Torque and axial force were monitored using a 20,000 in-1b - 50,000
1b Lebow Model 6468 toryue-thrust cell, linear to within .15 pcrcent of
rated capacity, with zero crosstalk between thrust and toraue. A 10,000
PSI diaphragm pressure transducer, linear to .1 percent, sensed the pres-
sure during internal and external pressurization.

For biaxial stress tests, micromeasurements type WA-06-12WR-350 strain-

15




gage rosettes were used to nonitor the strains in three directions on the
tube surface. From these three strain measurements, the principal strain
magnitudes can be calculated. Two strain-gage rosettes were applied to each
tubular specimen in order to check bending and any anisotropic behavior of
the material. Two additional axijal gages as well as the strain gage rosettes
were monitored during the tightening process in order to assure that rnc bend-
ing moment was induced through over-tightening one side of the grip. This
procedure worked very well; the two rosettes recording nearly identical
strains during any particular test.

Strain gages and transducer signals were recorded using the same system
described in the uniaxial tension/compression section. The one main differ-
ence being that the digital computer recorded, stored and reduced the data.
The computer biaxial data acquisition routine, using BASIC computer language,
could handle up to ten data channel rates for up to .1 sec'] (sampling at
3 KHz). This routine also calcuiated the stresses from the forces and the
principal strains from the strain gage data. This information was then
plotted on a CRT scope from which a hard copy was obtained.

Fracture Toughness

Standard ASTM compact tension fracture toughness specimens were machined
according to Figure 11. This particular geomatry conforms to ASTM standards
in order to give a valid fracture toughness value. The grips used for the
fracture toughness test are shown in Figure 12.

The specimens were first precracked by fatigue at approximately 10 Hz
using the Tower linear actuator commanded by the [xact Function Generator.
The fatigue process was performed under displacement control which allowed
for the stress intensity at the crack tip to naturally decay off as the
crack progressed. The fatigue crack length was monitored optically and the
fatigue process stopped when the length of the fatigue crack exceeded .05

inches.

16
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Figure 12. Fracture Toughness Grips

In the subsequent pull test the load was plotted against crack opening
as measured with the clip gage attached to the notched portion of the
specimen, Gage calibration wax linear to within .0001 inches through
.25 inches displacement.

Pin Bearing Strength

Pin-type bearing strength tests were performed according to ASTM
standard E-238. The specimens were machined according to Figure 13. As
can be seen from the figure, various distance ratios along with various
plate thicknesses were tested. The gripping arrangement, shown in Fig-
ure 14, was used to perform this particular test. This design allowed
for a miniature LVDT to be positioned above the specimen to monitor pin-

hole elongation.
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] Figure 14. Grip Arrangement

4 for Pin Bearing Strength. Tests
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A Toad -vs- displacement record was plotted on the X-Y recorder from

which the pin-bearing strength was determined.
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EXPERIMENTAL RESULTS

Ultrasonic Investigation

E A 1.5 inch cube of 2014-T651 aluminum alloy was subjected to ultrasonic
' analysis. By exact measurement of the transit time required to pass a sound
wave through the material the Young's modulus of the material can be cal-
culated. Results of this investigation are shown in Table I.

The technique used to obfain the ultrasonic data is a through-transmission

f system shown schematicaily in Figure 15. The main advantage of this technique
% is the high accuracy with which the transit time of the sound wave through the
i specimen can be measured. The signal through the specimen is viewed on the

i oscilloscope, alternately with the signal from the variable frequency syn-

? thesizer after it has passed through a shaper. The shape of the latter is

;‘ adjusted for an exact match of the first arrival of the wave through the speci-

men. The pulse that excites the transmitting transducer is next viewed and
its shape matched to that of the comparison wave. Once this is done, the
frequency of the synthesizer is adjusted for an exact number of cycles which,
when divided by the frequency, is the transit time through the specimen. A

more detailed description of the technique is available in Reference 4.

TABLE I.
ULTRASONIC VELOCITIES

SPECIMEN LONGITUDINAL SHEAR YOUNG'S

ORTENTATION VELOCITY (ft/sec) VELOCITY (ft/sec) MODULUS (psi)

rolling 20670 10,170 10.5 x 10°

width 20640 10,100 10.6 x 10°

thickness 20670 10,200 10.3 x 10°
Density = 175.62 ]bs/Fti = 2.81 gn/cm’

21
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Figure 15. Schematic of the Ultrasonic "Through Transmission” System.

Uniaxial Tension/Compression

Tests performed under uniaxial stress states are listed in Table II.
Uniaxial compression results for strain rates from 10'5 to 10 sec'1 are
shown in Figure 16 for specimens with axes in the rolling direction. The
dashed Tine in Figure 16 representing the true stress-strain rasponse dif-
fers 1ittle from the engineering stress-strain curves in the region shown
due to the smallness of the axial strain. Compression test results for the
split-Hopkinson bar (see Reference 2 for data analysis) are shown in Figure

17 with the slower rate data superimposed. Clearly, a single curve repre-

cants all data within experimental error (~ 3%) for all strain rates.
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TABLE II. UNIAXIAL STRESS TESTS PERFORMED
TENSION(T) ~ STRAIN | SPECIMEN
NUMBER OR RATE ORIENTATION REDUCTION | AXIAL
OF TESTS | COMPRESSION(C) ROLLING/WIDTH/ | IN AREA % | ELONGATION
IN/IN/SEC | THICKNESS %

] c 1079 R - -
2 C 1074 R - -
2 C 1073 R - -
2 c 1072 R - -
] c 1071 R - -
2 C 1 R - -
1 C 10 R - -
2 c 1000 R - -
1 T 1075 R N 17 N B
2 T 1074 R - -
4 T 1073 R 1553 4-6
2 T 10-2 R - -
1 T 10°1 R - -
1 T 1 R ~ 15 “ E
2 T 1000 R - -
3 T 10-3 W 1543 o
3 T 19-3 T - n 2.5
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Results for uniaxial tension tests performed in the rolling direction of
the piates are seen in Figures 18 through 21. Figure 18 is the engineering
stress-strain response for the tensile specimens with 0.5" gage length for
strain rates from 10'5 to 10 sec']. Figure 19 is the response for the 0.13"
gage length samples over the same strain rate range. Figure 20 combines Fig-
ures 18 and 19 indicating that the material is not strain rate sensitive and
that the small specimen provides representative properties. Figure 21 repre-
sents the data observed with a split-Hopkinson bar compared directly with
data taken at 10'3 sec°]. Again, agreement is within experimental error, indi-
cating no strain rate sensitivity to the highest strain rates tested. All
tension test results show little work hardening.

Elastic modulus for the material (slope of the elastic portion of the
test) is 10.4 * 0.2 x 106 psi for both compression and tension. This value
agrees well with the ultrasonic data and previously published data (5). Yield
stress is found to be 67 + 2 ksi for both uniaxial compression and tension.
Also, uniaxial tension tests performed on specimens aligned to the thickness
and width of the plate, produced elastic modulus and yield stress within the

scatter band of Figure 18.

Total axial elongation to failure defined as:

Elongation =
(Ductility)

Lf = final gage length

—
n

initial gage length

was measured for each specimen. At failure the elongation was approximately

25
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5 percent for the 0.5" gage length specimens aligned in the rolling direction.

The corresponding reduction in area:

A -A
PA = 2
(1}
where:
Af = final area
A = initial area

()
ranged from 12 to 18 percent. (It should be pointed out that most of this

scatter arises from measurement difficulties rather than material scatter,
i.e., 0.001 inch diameter change equals ~ 2 percent reduction in area). In
addition, axial elongation and reduction in area were found to be the same
for tests conducted through the width of the plates. Through the thickness
of the plate, however, a condition of anisotropic ductility exists. The axial
elongation measured after fracture through the thickness was found to be a
factor of 2 lower than the rolling and width orientation. This condition is

shown schematically in Figure 22.

Figure 22. Axial Elongation to Failure in Three Plate Directions
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Table III lists the biaxicl ~ests performed and the lvading conditions.

The majority of tests were conductcd at an effective strain rate of acpruxi-

mately 1074 sec”!

-1.
sec

with a few cdde: sty at a higher rate, approximately |

Before discussing the experimental results some definition of yigiu mu,
be nede. The definition used here is based on the square root of the sec: i
invariant of the stress deviator, vJ,", (i.e., von Mises yield condition)

plotted against the square root of the second invariant of the strein dev?

ator, /15", where:

] 1

A7 = — [lo3 - 02)2 + (03 - 01)2 + (0} - 6,)2 + 61y,2] *
/6

] |

My = = [(e3 = €2)2 + (e3 - €1)2 + (€] - €5)2 + 691,2] °

where oy, o0, 03, 112 and e, €3, €3, P are the stresses and strains
respectively with subscripts ,, ,, 3 referring to the axial, hoop and radial
directions. ¢; and ¢, are generally measured strain gage values at the sur-
face of the tube. €3, the strain through the wall of the tube, is readily
calculated using elasticity equations during elastic loading and from the
assumption of incompressible flow for the plastic components of strain (i.e..
clp + ezp + e3p = 0) after yield. Deviatoric stress-strain curves for various
tests are shown in Figure 23. Yielding is defined as the intercept of a line
drawn parallel to the initial straight line portion of the curve at 0.2%
strain off-set. For the cases where internal pressure was applied failure
occurred before the 0.2% off-set. In these cases yield was defined as the

highest stresses reached during the test.
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TABLE III
BIAXIAL STRESS TESTS PERFORMED

b da i

Ce X Tniasa ot fev s Sty

T

’

(i o car a T L

TEST NUMBER

TEST TYPE (stress ratio)

gy (e | A 1 S e S L O
.

1 & 2 (high rate)
3

5 & 6 (high rate)

7 & 8 (high rate)
9

10

1 & 12 (high rate)
13

14 & 15 (high rate)
16

17

2§

Axial tension

Axial tension--
Internal pressure (1 to %)

Axial tension--
Internal pressure (1 to 1)

Axial tension--
Internal pressure (% to 1)

Internal pressure

Internal pressure
Axial compression (1 to %)

Internal pressure-
Axial compression (1 to 1)

Pure torsion

Torsion-
Axial compression (% to 1)

Axial compression

External compression
Axial tension (1 to 1)

Torsion-Axial tension (% to 1)




U LT

40t ,,,,—————-——--' :
- AXIAL TENSIO:
(%]
[~ 8
2 30 -
x
9
20 -
1o -
1 1 [
0 05 10 15 20
L, %
50 T 4 4
% SO 1
[- 9
n.
o
] AXIAL TENSION -~ TORSION
tﬂao— 1
=S
201 1
10} 1
1 1 1
o] 5 L0 1.5 20
JI}.%
Figure 23, Deviatoric stress-strain curves

under various loads.

0

SO0y Y Y
4or i
- PURE SHEAR
(o 8
m.
o 30+ -
x
t«
D
201 -
'0 ol -
1 e I
(o] 05 1) 15 20
20 ‘e
50 1] 1
40} .
"°~: INTERNAL PRESSURE -
"b AXIAL TENSION
* 30} .
t?
=
201 -1
IC| ~
1 i |
0 5 1.0 1.5 20
VIE %

for 2014-T651 aluminum tested




Ladi e’ Al s b iy ]

For the series of tests presented here the strain rate was controiled
to be constant on one axis while the second axis was controlled to provide
a constant stress ratio (i.e., maintain proportional loading). Selection as
to which axis would be maintained at constant strain rate was usually deter-
mined by the dominating stress. For example, referring to Table III, Test 5,
it can be seen that the internal pressure is the major stress; therefore, the
strain rate in the hoop direction was maintained constant. This procedure
preved to work well with the calculated effective strain rate remaining rela-
tively constant throughout the test while maintaining a constant stress ratio.
Figure 24 shows the stress-strain time history for Test 5. As can be seen
from the plot the three strains maintain approximately constant strain rates
during elastic loading. When yielding first occurs a deviation in strain
rate and stress ratio is noted. The effective plastic strain rate (éeff) in

this case was ~ 2.9 x 1073 sec'] where:

1
. = 0 - L 2 * L4 . . S l"
Coff —6 [(53 €)% + (€3 - &))2 + (&) - ¢,)2+ 5‘1’122]1

Yield

The yield surface under biaxial load is shown in Figure 25 in the Pi-
plane for aluminum alloy 2014-T651 at different strain rates. Since agree-
ment between the higher rate (~ 1 sec']) and slower rate (v 10'4 sec"]) was
excellent (yield at 67 + 2 KSI) we can conclude that the material is strain
rate independent. Figure 25 indicates also that the material agrees reasan-
ably well with the von Mises yield criteria - a circle in the Pi-plane for

isotropic materials - except for the tension-tension quadrant.
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Axial tension data observed with tubular specimens are seen to agree
very well with test results for uniaxial tension specimens discussed earlier.
Similar agreement was observed for pure compression. However, buckling (Fig-
ure 28a) was very evident with the axially compressed tubes at high strains
in the post-yield region (6). Note that the tubular specimens shown in Fig-

ure 9 on being subjected to external pressure sense axial tension, Tp where

A (ri2 - rp?)
o S —— e —re e
A 0 3 2y O
a A, (rz% - ry?)
3
3
E where A0 = tube area, A; = area due to difference between r; and r,, radii

of the tube at the grip and gage sections respectively. The data point, Test

; #16, is seen to lie on the von Mises yield surface. Combined torsion/axial
E} load yield stresses agree well with the von Mises yield surface. In pure
torsion a negative axial strain occurred, on the order of .06 percent at

F failure. The axial shortening, however, is small compared to the shear

strain induced by torsion.

Analysis of tests performed in the tension-tension quadrant indicated
that the radial component of stress induced by the internal pressure was too
large to be neglected (~ 10% of yield). It was therefore decided to calculate
the stresses of the inside wall of the tubular specimen using thick-walled

cylinder analysis as opposed to the more conventional thin-walled analysis,

i.e,
2 2
L S iU
hoop i (r2-r2)
(r=r;) 0 1
%vadial = " Pi 70
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where Pi = internal pressure, r = radius and t = thickness. This procedure

accounts for all stresses present and, therefore, more accurately describes

=g

the yield stress state. The effect of neglecting the radial stress can best
be seen in a two dimensional stress piot, Figure 26. This plot is simply

the projection of Figure 25 onto a two dimensional plane (von Mises surface
becomes an elipse with the equation aAz - 7% + o¢2 = K2, with K = 67,000

? psi for this material) with test numhers corresponding to Table III. The

% dashed line in the tension-tension quadranti connects test points (X) analyz-
ed using the thin-walled cylinder formula (Pr/t); "squashing" of the von Mises
- elipse is very pronounced. Thick-walled cylinder analysis, shown as circled

| data points, are seen to "extend" the yield surface but they still lie with-
in the ellipse. The reason for the low yield in this region is the limited

plastic flow ex: "bited prior to fracture, which occurred below the 0.2%

off-set definition for yield.
Duct” lity

As indicated above, tests conducted in the tension-tension quadrant
exhibit very little plastic strain with fracture occurring well below the
0.2% off-set definition :iof yield. This is not wnusual (8, 9, 10) since this
biaxial stress.quadrant is much more sensitive to any material anisotropy
or pre-working than any of the other quadrants. Indeed, it is the low duc-
tility through plate thickness that dominates these results. This fact can
be seen more clearly if the principal strains, ¢

and ¢ , are plotted

axial hoop
in a two dimensional plane as in Figure 27. This plot shows the uniform

strain at fracture for specimens subjected to various stress states (data
point numbers correspond to Table III). For this case "uniform strain" is

defined as the strain that occurs in the area which is unaffected by any
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Figure 26. Two-Dimensionai Yield Surface for 2014-T651
Aluminum Alloy.
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Figure 27. Uniform strain at fracture for biaxial tests.

localized necking associated with fracture. The low ductility exhibited
in the tension-tension quadrant is dominated by the anisotropic behavior
through the plate thickness. Figure 28d shows such a tensile failure.
The failure surface is irregular and shows little plastic strain.

Figures 28c and e illustrate shear failures, the former as a result of
torsional loading and the latter as a result of axial tension and external
pressure. The shear failure again responded to the Tow ductility threugh

the thickness with the failure resembling the irregular tensile failure.
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Figure 28. Biaxially Fractured Tubes

Fracture Toughness

Plane strain fracture toughness, KIC’ of 2014-T651 aluminum was deter-
mined according to ASTM E 399-72. Results of these tests performed at two
different loading rates (~ 16 and 160 1b/sec), are shown in Table IV. As can
be seen from the table, values of fracture toughness range from 23.5 to 25.6
ksi - in? (24.4 ksi - in% average) with no significant differences in results

for the two rates performed. All tests were conducted at room temperature with
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TABLE 1IV.

FRACTURE TOUGHNESS RESULTS FOR 2014-T651 ALUMINUM ALLOY
IN THE ROLLING DIRECTION

Specimen |Specimen égzgia; ratique Average Loading Kic
bescription) asg®®  |Cycles  [{AUINE  pyee ksi - in®
# A ~ Max 1bs Length (1b/sec)
B ~ Min Ibs (Ins)
2 Straight |A = 990 26,000 0.085 16 24.3
cut  |B =110
5 h =
Chevron 1222010 | 72,000 | o0.077 17 25.6
6 Ch =
evron R 2199 | 76,000 | o0.107 16 23.5
7 Chevron A = 1000
. 64,000 0.098 154 25.1
9 =
Chevron 12 = 1100 1 57,500 | 0.113 154 25.5
10 -
Chevron 1A= 3020 | 98,000 | 0.0m 166 23.7
Ki. = 24.8 £ 1.1 ksi - in®
Ic .4 2 1. ST - 1In
ROLLING
5 ICKNESS
WIDTH ————a
Figure 29. Fracture Toughness Specimen Orientation.
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the specimen orientation shown in Figure 29 {longitudinal-transverse specimens
according to ASTM E 399-72).

Figure 30 shows a typical test record and appropriate calculations for
a fracture toughness test. The figure shows the test to be valid according to

Section 9.1.5 and 9.1.2 of ASTM E 399-72 (i.e., 2.5 (ch/o )2 is less than

yield
both the thickness and the crack length of the specimen and Pmax/pQ < 1.1 where
Pmax = maximum load sustained and PQ = load at the intercept of a line with 95%
of the slope of the initial straight line portion of the curve; see Figure 30)

The specimen strength ratio, R (R._=2P _ (2wta)/B(w-a)? oyie]d) is cal-

sc’ sC max

culated to be 0.712 for this particular test. This value, however, appears to
be representative for all tests performec here.

A1l fractures for the material were of the "fraction oblique" type (see
ASTM E 399-72) with typical values of oblique fracture per unit thickness,
(B-f)/B of 0.1 to 0.3. The fracture appearance of the material is seen in Fig-
ure 31. The extent of the fatigue c¢rack is «~lineated by the fine textured

fracture surface with the rest of the fracture having a coarser appearance.

Figure 31. Failure Surface for Fracture Toughness Specimen.
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Pin Bearing Strength

Pin type bearing strength tests were performed on the 2014-T651 alum-
inum alloy for two edge distance ratios and three thicknesses. Tests were

performed in accordance with ASTM E-238 with the results shown in Table V.

TABLE V.
Pin Bearing Strength Results for 2014-T651 Aluminum Alloy in the Rolling
Direction
Specimen Pin Edge Edge Plate Bearing Bearing
Distance
Diameter Distance Ratio Thickness Yield Stren?th
g (in) (in) (approx. ) (in) (ksi) (ksi
0 0.2503 0.501 2 G.152 109.2 152.6
6 0.2503 0.501 2 0.1252 106.9 140.4
1 0.2503 0.501 2 0.103 109.1 147.6
5 0.2503 0.375 1.5 0.150 98.5 109.2
3 0.2503 0.375 1.5 0.1226 94.6 102.8
2 0.2503 0.375 ¥.5 0.095% 98.9 109.5

When discussing the bearing strength of a material a few key defini-

tions* are very beneficial:

bearing area -~ the product of the pin diameter and specimen

thickness.

bearing stress -- the force per unit of bearing area.
bearing strain -- the ratio of the bearing deformation of the

bearing hole, in the direction of the applied

force tu the pin diameter.

* taken from ASTM E-238

42




thacih

bearing yield -~ the bearing stress at which a material
strength
exhibits a specified limiting deviation

from the proportionality of bearing

TR S b e TERTE AR T T AN TN R AR

stress to bearing strain.

bearing strenath the maximum bearing stress which a-material

is capable of sustaining.

edge distance -- the distance from the edge of a bearing
specimen to the center of the hole in the

direction of applied force.

edge distance ratio the ratio of the edge distance to the pin

diameter.

A1l tests were conducted at room temperature at a rate of approxi-
mately 0.1% bearing strain per minute on nominally 3.0" wide specimens.

A typical test record is seen in Figure 34. Bearing yield is cal-
culated at an offset from the initial straight 1ine portion of the record
equal to 2% of the pin diameter. Bearing strength is simply the maximum
load taken by the sample divided by the bearing .area. Table V shows that
an average bearing yield of 108.4 KSI was achieved for an edge distance ratio
of 2 as opposed to an average of 97.3 KSI for the 1.5 edge distance ratio.
The bearing strength for the large edge distance ratio was also higher,
146.8 KSI as compared to 107.2 KSI, for the smaller edge distance ratio.
Note that bearing area, i.e., thickness of the plate used, has no effect on
bearing yield or bearing strength.

The fracture, as seen in Figure 33 exhibits shear failure.
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CONCLUSIONS

The series of tests performed show that 2014-T651 aluminum alloy is
strain rate independent over the range tested (10'5 to 10° sec"]). Tests
performed at various orientations within the plate indicate that a case of
*anisotropic ductility” exists with minimum ductility through the thick-
ness. The ductility through the thickness is a factor of two lower than
either the rolling or width directions while yield is isotropic.

The effect of multiaxial stress of the material is seen to follow the
von Mises yield criteria very well; at yield the square root of the second
invariant of the deviatoric stresses is constant. The low ductility through
the thickness, however, completely dominates the failure in the tension-
tension stress quadrant. Whenever the sample is subjected to a tensile stress
acting in the thickness direction, the sample failure occurs through this iow
ductility region. The material exhibits very little work hardening in tension,
in constrast to the behavior in compression.

Fracture toughness values are also found to be independent of rate. The
pin bearing strength of the material does not depend on the plate thickr2ss.
It does, however, depend on the edge distance ratio, increasing with increas-

ing edge distance ratio.
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